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Abstract. In this paper, we revisit the problem of quantum entanglement in an oscillating macroscopic
mirror previously studied by Marshall et al. consisting of a modified Michelson interferometer where one
of the mirrors is free to oscillate about its center of mass. A photon incident upon the oscillating mirror
becomes entangled with the mirror, driving the mirror into a superposition of quantum states. Once the
photon and mirror decouple, the mirror returns to its initial state. The purpose of our investigations was to
optimize the parameter regime, taking into consideration the current state of technology and the demands
imposed by the need to maintain a stable environment in the presence of thermal noise. Optimization should
not demand ultra-low temperatures and this is reflected in our results. Our results also show that if the
separation between states is maintained at 10−14 m, the mirror size is reduced, making it easier to induce
superposition in the mirror. The critical nature of mirror reflectivity and its connection to cavity decay rate
was also revealed by our investigations. The results obtained through our investigations could be useful in
quantum error correction, where decoherence negatively affects the results of computations performed by
quantum computers. Finally, we note that we are only concerned with an isolated system, where no losses
to the external environment occur and any decoherence that occurs within the system remains internal to
the system; that is, any mention of decoherence refers specifically to recoverable decoherence.

PACS. 03.65.-w Quantum mechanics – 07.05.Kf Data analysis: algorithms and implementation; data
management – 42.25.Hz Interference – 42.25.Kb Coherence

1 Introduction

Schrödinger’s famous thought experiment which led to
the conclusion that a cat can exist in a superposition of
states, a state of being alive and a state of being dead,
showed that even macroscopic systems would, in theory,
exhibit quantum mechanical properties. Environmental
conditions lead to decoherence and a subsequent loss of
certainty. This has been a constant problem for investiga-
tion of macroscopic systems exhibiting a superposition of
states.

Marshall et al. [1] describes a Schrödinger cat exper-
iment in which the cat is replaced by a mirror. This ex-
periment proposes a modified Michelson interferometer as
shown in Figure 1b. A single photon is emitted from a
source and passes through a beam splitter followed by a
semi-reflecting mirror initially oscillating about its center
of mass with a pre-determined frequency. The amplitude
of the mirror’s oscillation should be large enough to over-
come any inherent uncertainty in the position of the center
of mass of the mirror due to random quantum fluctuations
of its atoms. Thus, a change in the mirror’s position could
more easily be detected.

a e-mail: apuri@uno.edu

The photon has two equally probable destinations: a
fixed mirror at the end of cavity A or a micro-mechanical
oscillator at the end of cavity B. If the photon interacts
with the mirror in cavity B, then its motion is altered
by the radiation pressure of the photon. Due to the non-
deterministic nature of quantum mechanics, however, one
can not say with absolute certainty which path the photon
will “choose” to take. Only the probability that a given
path will be taken can be determined. Moreover, due to
the oscillation of the micro-mirror, there is a nonzero path
difference between the cavities creating self-interference of
the photon [2]. The photon will interact with the oscillat-
ing mirror for one full period of the mirror’s motion; how-
ever, the “amount” of photon remaining in the cavities
will decay over this period due to transmission losses by
the mirror and random thermal fluctuations of its atoms.

However, at the end of a period, what remains of the
photon will leak out of the cavity where it is detected at
detector 1 or detector 2, creating an interference “pattern”
for the mirror. Thus, interference visibility for the photon-
mirror system will provide a measure of the amount of
decoherence in the system over the period of motion of
the oscillating mirror. Furthermore, this interference visi-
bility will be increased for a mirror with sufficiently large
amplitude of oscillation.
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Fig. 1. (a) The Michelson interferometer produces interference
fringes by splitting a beam of photons so that one beam strikes
a fixed mirror and the other one a movable mirror. When the
reflected beams are brought back together, interference pat-
tern results. From the interference pattern we can characterize
the position of the moving mirror. This method is one of the
most sensitive methods for measuring the displacement of ob-
jects, being used also to detect gravitational waves and for high
precision positioning. In the figure, one path comprises three
crossings of the beam splitter while another only one crossing.
To re-establish equality of optical paths in the glass, a λ/4
compensating plate is inserted. (b) Set-up as used in [1] modi-
fied to induce ultra-low temperatures in the oscillating mirror’s
environment.

1.1 Environmental conditions

Due to the extreme sensitivity of the components in-
volved, environmental conditions must be carefully con-
trolled. The mirror cannot be allowed to interact with air
molecules, so ultra-high vacuum conditions are necessary.
In addition, thermal fluctuations of the mirror’s atoms will
affect the path of its motion and increase the decoherence
rate. Thus, temperature is of primary consideration. Tem-
peratures on the order of 60 µK are necessary for optimal
results at low mirror frequencies. Extremely high qual-
ity mirrors are also necessary to minimize transmission
losses [3].

In order to ensure the return of the oscillating mirror
to its ground state, the values of the feedback laser’s gain
factor g and the cavity decay rate γc must be considered
simultaneously. If a small gain factor is required, then a

correspondingly high value of γc is necessary. Conversely,
if a small value of γc is required, then a correspondingly
high value of g is necessary.

Experimental parameter regimes that satisfy the phys-
ical constraints based on a particular experimental geom-
etry have been examined by Bose et al. [4] It was deter-
mined that for a 1 cm cavity, γc must be at least 106 s−1

for moving mirrors [at least 10 s−1 for stationary mirrors]
and for a 10 µm cavity, γc must be at least 107 s−1. Fur-
thermore, they show that in order for decoherence not to
occur too rapidly, the mirror frequency must be about the
same as the decoherence rate.

This paper addresses the question of how to further re-
duce the sources of quantum decoherence. This is achieved
by optimizing the parameters subject to all physical and
geometrical constraints of the problem and thus an opti-
mum viable experimental configuration is proposed.

1.2 Optimization of parameters

We propose an optimization of the parameters involved
which would allow the experiment to be performed utiliz-
ing current technology, reduce decoherence by minimizing
photon leakage from the cavity by increasing the qual-
ity factor of the oscillator, return the mirror closer to its
ground state, satisfy the constraints, and work with an
environmental temperature that is easier to achieve. The
first, third, and fourth objectives can be realized by finding
parameter values that simultaneously minimize the energy
of the cooled mirror and satisfy the constraints imposed
on the set-up. The second objective can be accomplished
by improving the quality of the optical cavities and replac-
ing the mechanical oscillator with an optical actuator. The
third objective can be accomplished by choosing a suffi-
ciently high frequency for the oscillating mirror. The opti-
mization of parameters that we propose in this paper are
important to the realization of the experiment. As origi-
nally proposed, the constraints could not all be satisfied.
In particular, the cavity’s decay rate in [1] is much higher
than would be required by the constraints. However, cav-
ities can not as yet be constructed with decay rates as
low as would be necessary. Thus, our work helps to ensure
that this experiment can indeed be performed.

The plan of the paper is as follows: in Section 2, we out-
line the basic experimental set-up. Based on environmen-
tal considerations, we present an improved set-up which
can detect interference visibility at very low temperatures.
Section 3 is devoted to a brief review of the mathematical
formulation of the problem [1]. Experimental constraints
are presented in Section 4. Numerical results are presented
in Section 5. Finally, Section 6 is devoted to a brief dis-
cussion of our results.

1.3 Motivation

Our investigations have been motivated by the need for
reliable error correction methods in Quantum Comput-
ing. In 1982, Feynman gave the first formal description
of a machine capable of using the principles of quantum
mechanics to simulate physical processes [5]. His idea has
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Table 1. The parameters used by the authors of [1].

ωm/2π (Hz) γm (s−1) P (W) γc (s−1) M (kg) η L (m) g TE (K)

500 0.03 10−8 3 × 107 5 × 10−12 0.8 0.05 6 × 105 2 × 10−3

led to the modern concept of a quantum computer. A
quantum computer is a device in which computations are
carried out by placing one or more units of qubits into a
superposition of two states; where, a qubit is an informa-
tion “particle”. One state is equivalent to a boolean state 0
and the second to a boolean state 1. Thus, there is a prob-
ability of the qubit being in state 0 as well as a probability
of the qubit being in state 1; where, for a qubit in super-
position, both probabilities are simultaneously nonzero. A
quantum computer would execute commands by operat-
ing on sequences of qubits, thereby producing new states.

Unfortunately, constructing a quantum computer of
the size needed to solve formidable problems turns out
to be a difficult problem. Environmentally induced deco-
herence destroys the superposition states introducing er-
rors into the computations [6]. A coherent state must be
maintained for small couplings and for very short time in-
tervals [7]. Thus, the problem of decoherence is a hurdle
that must be cleared before any real gains in quantum
computing can be made.

Although (environmentally induced) decoherence has
been an ongoing problem in quantum computing, there
have been recent advances. Research has been conducted
in the area of quantum error correction [8]. Here, a sys-
tem in which the amount of decoherence can be measured
and minimized is used to fine-tune the quantum system
as needed. Thus, it acts as a sort of gauge to adjust the
parameters of the quantum system to minimize errors.

The apparatus described in our paper would be quite
useful in this capacity. With an optimal parameter regime
defined, it would provide a system capable of inducing su-
perposition in a bacterium-sized object that would remain
in this superposed state long enough to provide informa-
tion that could be applied to error correction of quantum
systems. The error correction apparatus would be isolated
from the external environment thereby reducing environ-
mentally induced decoherence. Furthermore, at high fre-
quencies, it could be maintained at near room temperature
making it easier to implement and control.

2 Experimental considerations

The temperature of the oscillating mirror’s environment
is one of the most important factors in determining how
the experiment is set-up and conducted. Not only does it
control how the set-up is designed, but also has a great
effect on decoherence rate and interference visibility.

However, our analysis revealed the fact that the tem-
perature itself is affected by the mirror’s frequency. Thus,
there are two parameter regimes of interest: one with a
low oscillator frequency and another with a high oscilla-
tor frequency.

2.1 High frequency regime

For high frequencies, it is not necessary to maintain the
ultra-low temperatures required by the lower frequencies.
For example, for a frequency of 10 MHz, a temperature
of ∼302 K is all that is required! Figure 1 illustrates a
set-up that will suffice for this regime (see also Tab. 1).
This set-up uses a modified Michaelson interferometer. In
it, two equal length optical cavities are used to transport
a single photon. At the end of each cavity is a mirror. One
cavity contains a large, rigid mirror while the other con-
tains a micro-mirror attached to a mechanical oscillator.
The frequency of the oscillator, hence of the mirror, cre-
ates a path difference between the two cavities. It is this
path difference that puts the photon into superposition,
which is transferred to the mirror during their entangle-
ment. While lower temperatures help maintain a stable
environment, no adaptations must be made to the set-up
when working with higher temperatures.

2.2 Low frequency regime

For low frequencies, a colder environment is needed, per-
haps as low as 60 µK. We were able to achieve an op-
timized set of parameters for a frequency of ∼300 Hz
with an environmental temperature of ∼2.7 mK (some-
what higher than the temperature used in [1]). At this fre-
quency and temperature, effects on the decoherence rate
and interference visibility became quite apparent. Lower
temperatures would be desirable; in fact, they would be
necessary for even lower frequencies. Figure 1b illustrates
an experimental set-up designed to achieve an ultra-cool
environment.

Detectors 1 and 2 are avalanche photon detectors, ca-
pable of detecting a single photon. The photon source is a
single photon emission laser that provides a short burst of
photons. Cavities A and B are Fabry-Pérot cavities spe-
cific to a Michaelson interferometer, which can provide
good detection in the case of a weak perturbation. The
cantilever is a Si cantilever with high Q (∼106) that can
be put in oscillation by a weak excitation [9]. The opti-
cal actuator uses the radiation pressure of the photon to
make the cantilever oscillate giving a very low inertia to
the oscillation, which is very stable in frequency [10]. The
micro-mirror is a high reflectivity (SiO2/TiO2) multilayer
structure. The cooling process has four stages: liquid He
(1.8 K), He3 dilution (2 mK), optical cooling [11] and/or
adiabatic-demagnetization cooling (60 mK).
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3 Mathematical formulation

In this section, we present, for completeness, a brief review
of the mathematical formulation of the problem [1].

The Hamiltonian for the photon-mirror system is
given by

H = �ωca
†a+ �ωmb

†b − �Ga†a(b+ b†) (1)

where a† and a are the creation and annihilation opera-
tors for the photon in the cavity and ωc is its (angular)
frequency, b† and b are the creation and annihilation oper-
ators for the phonon generated by the center-of-mass mo-
tion of the mirror, ωm is the mirror’s (angular) frequency,
and G = (ωc/L)

√
�/2Mωm is the coupling constant of

the photon/mirror system, with M being the mass of the
oscillating mirror [12].

Let |α〉 and |β〉 denote the initial state of the photon
and mirror respectively. Suppose that the photon is ini-
tially in a superposition of states of being in cavity A and
cavity B and the mirror is initially in a coherent state.
Then the state of the photon and the mirror after a time
t are [12]

|α (t)〉 =
1√
2

(|1〉A |0〉B + |0〉A |1〉B) e−iωct (2)

and

|β (t)〉 =

[

e−
|β|2
2

∞∑

n=0

βn

√
n!

|n〉
]

e−iωmt (3)

respectively, with |n〉 being the nth eigenstate of an har-
monic oscillator.

For the entangled system, however, the mirror mo-
tion is perturbed by the photon’s momentum due to the
radiation pressure it exerts on the mirror [13]. Putting
κ = G/ωm as the quantity used to measure the displace-
ment of the mirror’s center of mass in units of coherent
state wavepacket lengths, we obtain the state of the en-
tangled mirror/photon system after a time t [12]

|ψ (t)〉 =
1√
2
e−iωct

(
eiκ2(ωmt−sin ωmt) |1〉A |0〉B

× ∣
∣βe−iωmt + κ

(
1 − e−iωmt

)〉 )

+
1√
2
e−iωct |0〉A |1〉B

∣
∣βe−iωmt

〉
(4)

and the initial state of the system is

|ψ(0)〉 =
1√
2
(|1〉A|0〉B + |0〉A|1〉B)|β〉. (5)

The off-diagonal element of the photon’s reduced energy
matrix as obtained in [1] is

1
2
e−κ2(1−cos ωmt)eiκ2(ωmt−sin ωmt)+iκIm[β(1−eiωmt)]. (6)

By averaging equation (6) over β using a Gaussian prob-
ability distribution defined by [12] (1/πn̄)e−|β|2/n̄, where

n̄ =
(
e�ωm/kBTE − 1

)−1
is the mean number of thermal

excitations of a mirror in a thermal state and TE is the
environmental temperature, one can obtain the maximum
time-dependent interference visibility V for a mirror in a
thermal state as

V = e−κ2(2n̄+1)(1−cos ωmt). (7)

The time-dependent decoherence rate is defined as [4]

γD (t) =
4k2γmkBTE

�ωm
(1 − cosωmt)

2
, (8)

where k is a quantum number. Here, k is taken to be
one, so

γD (t) =
4γmkBTE

�ωm
(1 − cosωmt)

2
. (9)

Therefore, the average decoherence rate over one period
of the mirror’s motion is

γD =
γmkBTEM (∆x)2

�2
, (10)

where the spatial separation between quantum states, ∆x,
is required to be much larger than the width of an in-
dividual wave packet [12]. Furthermore, if κ2 ≥ 1 (see
Constraints below), then the spatial displacement of the
mirror will be larger than the uncertainty in the position
of its center of mass due to random thermal fluctuations
of its atoms; thereby producing distinct positions of the
mirror. Thus, ∆x ∼ √

�/Mωm, and

γD ∼ γmkBTE

�ωm
. (11)

Finally, the final energy of the cooled mirror is given
by [13]

Ec =
�ωm

2
1

2 (1 + g)

[
4kBTE

�ωm
+ 2ξ +

g2

ηξ

]
, (12)

where g is the gain factor of the cooling laser, η is the
detection efficiency, and ξ is defined by

ξ =
64πcP

Mγmωmλγ2
cL

2
, (13)

with P being the intensity of the source light (incident on
the measurement cavity), M the mass of the oscillating
mirror, γm the damping rate of the mirror’s motion, and
γc the cavity decay rate. The first term in equation (12)
arises due to thermal noise in the system. The second term
in equation (12) is due to both the back action noise from
the source light as well as the back action noise from the
feedback laser. The third term in equation (12) is due to
the noise associated with imprecision in measurement. We
note that equation (12) has been modeled on equation (58)
in [13]; but, due to the large feedback gain required, a sec-
ond laser must be used to supply the necessary feedback
force used to cool the mirror down to its ground state.
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The feedback force supplied by this additional laser must
have a constant component that balances the back action
from the measurement field. As needed, the feedback laser
supplies an additional “kick” to the mirror to dampen its
motion allowing the mirror to settle into a steady state.
Once the mirror is cooled to its ground state and is no
longer oscillating, both the source light and the feedback
laser are simultaneously switched off, trapping a photon in
the cavity. Interference can then be measured and the pro-
cess is repeated. However, the addition of this second laser
contributes noise to the system that must be accounted for
in equation (12).

4 Constraints

Two types of constraints must be considered in the de-
termination of a set of parameters for the problem. Some
constraints arise due to the physical nature of the prob-
lem. Others arise due to limitations on measurement or
technology.

4.1 Constraint #1

For the superposition to involve two distinct mirror lo-
cations, the spatial separation ∆x between superposed
peaks must be at least of the same order as the width
of a single peak. This will ensure that the components
of the Schrödinger’s cat will be sufficiently separated in
space, by at least as much as the spatial width of each
of the cat’s components. We know that the width of each
of the components of the cat is equal to the width of a
coherent state. Thus κ2 � 1.

Moreover, if N is the number of round trips made by
the photon in the cavity during one period of the mirror’s
motion, L the cavity’s length, and c the speed of light,
then

2NL
c

=
2π
ωm

. (14)

Equation (2) can then be used with equation (14) to get

κ2 =
�N3Lω2

c

2π3c3M
. (15)

Thus, the condition κ2 � 1 implies

2�N3L

πcMλ2
� 1. (16)

4.2 Constraint #2

To ensure the separation of superposition states ∆x is not
due solely to random thermal fluctuations, ∆x must be
larger than the initial uncertainty in the mirror’s position.
That is, ∆x must be larger than the deBroglie wavelength
λth = �/

√
2MkBTE ,

∆x >
�√

2MkBTE

. (17)

4.3 Constraint #3

To facilitate the measurement of coherent states, the decay
rate should not be larger than one period of the mirror’s
motion; that is, γD � ωm. Thus,

γmkBTE

�ωm
� ωm, (18)

or
kBTE

�ωm
� ωm

γm
= Q, (19)

where Q is the quality factor of the mechanical oscillator.

4.4 Constraint #4

The photon and mirror must remain coupled throughout
the entire period of the mirror’s motion. Thus, γc � ωm. In
fact, we require γc � γD, since for decoherence to remain
in the system, the photon must still be present in the
cavity. Thus, we have from constraint #3,

γc � γD � ωm.

4.5 Constraint #5

Due to technological limitations, mirrors cannot currently
be constructed for arbitrarily small values of γc for short
cavity lengths. For example, the smallest value of γc is
at least 106 s−1 for 1 cm cavities and at least 107 s−1

for 10 µm cavities. It then follows that a high enough
frequency must be chosen so that constraint #4 can be
satisfied using current technology.

4.6 Constraint #6

The reflectivity of the cavity Rc and the cavity decay rate
are related by

Rc = 1 − 2Lγc

c
. (20)

The best mirrors have a reflectivity Rc ≈ 0.9999999. Thus,
it follows from equation (19)

1 − 2Lγc

c
≤ 0.9999999,

or

γc ≥ 5 × 10−8c

L
. (21)

Equation (21) is an imposed constraint on the value of γc.
The smallest cavity decay rate is inversely proportional to
the length of the cavity.
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Table 2. The parameters for a wavelength of 630 nm for frequencies of 300 Hz, 10 kHz, and 10 MHz. γc ≈ γD ≈ ωm, η = 0.8,
and ∆x = 10−14. For each frequency, R = 0.9999999 and N ≈ 4.45 × 107.

ωm/2π (Hz) γm (s−1) P (W) M (kg) L (m) g TE (K)

300 10−2 3.50554 × 10−17 5.59468 × 10−10 1.12161 × 10−2 9.00034 × 105 2.71391 × 10−3

104 3 × 10−1 1.16851 × 10−15 1.6784 × 10−11 3.36484 × 10−4 1.00004 × 106 1.00515 × 10−1

107 102 1.16852 × 10−12 1.6784 × 10−14 3.36484 × 10−7 3.00012 × 106 3.01545 × 102

Table 3. The parameters for a wavelength of 800 nm for frequencies of 300 Hz, 10 kHz, and 10 MHz. γc ≈ γD ≈ ωm, η = 0.8,
and ∆x = 10−14 m. For each frequency, R = 0.9999999 and N ≈ 5.66 × 107.

ωm/2π (Hz) γm (s−1) TE (K) M (kg) L (m) g P (W)

300 10−2 2.71391 × 10−3 5.59468 × 10−10 8.83271 × 10−3 9.00034 × 105 2.76061 × 10−17

104 3 × 10−1 1.00515 × 10−1 1.6784 × 10−11 2.64981 × 10−4 1.00004 × 106 9.20204 × 10−16

107 102 3.01545 × 102 1.6784 × 10−14 2.64981 × 10−7 3.00012 × 106 9.20207 × 10−13

Table 4. The algorithm used in the optimization.

Fixed Parameters: ∆x, η
Input: λ, ωm/2π, κ, γm

1. γ → ωc

2. ωm/2π → ωm

3. Set γc = γD = ωm

4. Compute M using ∆x ∼ √
�/Mωm

5. Compute TE using equation (10)
6. Check if ∆x > λth

7. Compute N and L using equations (14) and (16)
9. Determine g by minimizing equation (12) with respect

to ξ
10. Compute P using equation (13)

5 Numerical results

5.1 Optimization

A set of parameters is considered as optimal provided the
following conditions are satisfied

a. the parameters must be experimentally feasible;
b. the parameters must satisfy the constraints;
c. the oscillating mirror must return to its ground-state

energy within one period of its motion.

The optimization was performed first for a photon wave-
length λc of 630 nm and then again for 800 nm. For each of
these two wavelengths, three oscillator frequencies ωm/2π
were studied: 300 Hz, 10 kHz, and 10 MHz (see Tabs. 2
and 3).

Due to limitations imposed by current detection in-
strumentation, a value of 0.8 was chosen for η, the detec-
tion efficiency [1]. This guarantees a detection efficiency
that is both relatively high and realizable with current
technology. Also, to ensure maximum visibility for a given
temperature, we set κ = 1. This ensures that the first
constraint is satisfied. Finally, we fixed ∆x = 10−14 m.
With the fixed parameter values set, the others can then
be determined.

First, the relation ∆x ∼ √
�/Mωm was used to deter-

mine the mass of the oscillating mirror. Next, the envi-
ronmental temperature was computed from equation (10)

using γD = ωm satisfying contrainst #4. Equations (14)
and (16) [with κ = 1] were then solved simultaneously to
obtain the number of round-trips, N , the photon makes
in the cavity and the length of the cavity L.

The gain factor g was determined by minimizing equa-
tion (12) with respect to ξ and finding the value of g that
produced the ground-state (see Sect. 5.2). Finally, the in-
tensity of the source light P was obtained using equa-
tion (13). The algorithm used to produce our results in
outlined in Table 4.

5.2 Interference visibility and decoherence rate

5.2.1 Interference visibility

The interference visibility plotted as a function of ωmt over
one period of the mirror’s motion at various temperatures
for the three frequencies studied and a photon wavelength
of 630 nm is shown in Figure 2. These figures illustrate
that for a fixed frequency, interference visibility is strongly
dependent on environmental temperature. As the temper-
ature increases, decoherence sets in more rapidly. In fact,
for increasingly higher temperatures, smaller fluctuations
in temperature produce relatively larger effects on the vis-
ibility diagram.

However, the interference visibility’s sensitivity to tem-
perature is also dependent on frequency. As the mirror
frequency is increased, relatively higher temperatures re-
sult in comparable visibility diagrams. Thus, we find the
temperature requirements are relaxed as the frequency is
increased. For example, as the frequency is increased from
10 kHz to 10 MHz, the optimized temperature increases
from ∼101 mK to ∼302 K and yet the interference visi-
bility diagrams are quite similar.

5.2.2 Decoherence rate

The decoherence rate is the rate at which decoherence
of the photon and the oscillating mirror (photon-mirror
system) occurs. Upon becoming incident to the mirror
the photon will become entangled with the mirror. This
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Fig. 2. Interference visibility plotted as a function of ωmt over
one period of the mirror’s motion for various oscillator frequen-
cies ranging from 300 Hz to 10 MHz.

entanglement will continue for one full oscillation of the
mirror’s motion. If decoherence occurs too rapidly, then a
valid measurement can not be made. Conversely, having
some decoherence at the end of a period is desirable; since,
the path differences of the photon due to decoherence will
be measurable.

Environmental factors, particularly temperature, play
a significant role in the decoherence rate. Figures 3a–3c
show how the decoherence rate varies over one period of
the mirror’s motion for each of the three frequencies stud-
ied at several temperatures for a photon wavelength of
630 nm. It is clear from these figures that there is a strong
correlation between decoherence rate and environmental
temperature; decoherence rate increases with increasing
temperature [14].

Figure 3d shows the logarithm of the decoherence
curves for the three cases studied, plotted together in the
same graph. Here, we see that decoherence rate is also
dependent on frequency. As the frequency increases, the
maximum decoherence rate increases. Moreover, as the
temperature is reduced, the corresponding decoherence
rate tends to near zero. This indicates that when the tem-
perature is reduced, the corresponding decoherence rate
will be relatively smaller, perhaps ∼1% (or possibly even
less) of its value at the higher temperatures.

Fig. 3. (a–c) Decoherence rate plotted as a function of ωmt
over one period of the mirror’s motion for various oscillator
frequencies ranging from 300 Hz to 10 MHz. (d) The logarithm
of the decoherence rate as a function of ωmt over one period of
the mirror’s motion with all three frequencies shown together
(at the optimal temperatures).
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5.3 Determination of the ground-state

Suppose the equation defining Ec is differentiated with
respect to ξ. Then

dEc

dξ
= −

(
g2 − 2ηξ2

)
�ωm

4 (1 + g) ηξ
. (22)

Setting the derivative equal to zero and solving for ξ, gives

ξ =
g√
2η
. (23)

Substituting equation (19) into equation (16) produces

Emin
c =

kBTE

1 + g
+

�ωmg√
2η (1 + g)

(24)

which is the minimum value of the energy as a function of
the gain factor g. When there is no gain factor, i.e., when
g = 0, the minimum energy is Emin

c = kBTE . Moreover,
as the gain factor increases without bound, i.e., as g → ∞,
the minimum energy tends to the value Emin

c = �ωm/
√

2η.
Thus, for a given set of parameters, the minimum energy
is bounded for all g.

In this experiment, we want the mirror to return to
its ground-state within one cycle of its motion; that is, we
want Ec = �ωm. Substituting this value into equation (24)
and solving for g gives

g =
√

2η (kBTE − �ωm)
(√

2η − 1
)

�ωm

. (25)

When the gain factor is equal to this value, the mirror will
return to its ground-state.

Emin
c (scaled by a factor of 2/�ωm) is plotted against

g in Figure 4 for a photon wavelength of 630 nm. The
plot shows the energy for each of the three oscillator fre-
quencies we examined. Here we see that for a given cavity
decay rate, Emin

c decreases monotonically with increasing
g. Moreover, if the damping rate of the oscillator remains
constant (as in the 300 Hz and 10 kHz cases), the value of
g that produces a ground-state increases with increasing
oscillator frequency.

5.4 Photon source intensity

Once g is determined, its value along with equation (23)
can used to find the intensity of the photon source light P

P =
MγmωmλL

2g

64πc
√

2η
γ2

c . (26)

The intensity of the source light is plotted against the
square of the cavity decay rate in Figure 5 for each of
the three frequencies studied. Here we see that for a fixed
cavity decay rate, the required intensity increases with
increasing mirror frequency [15].

It is worth noting that for a mirror frequency of
10 MHz, the intensity required for γc ≈ 107 s−1 is very

Fig. 4. A plot of the minimum energy of the cooled mirror
vs. gain factor for various oscillator frequencies ranging from
300 Hz to 10 MHz. The points are the optimized values of g.

Fig. 5. A log-log plot of the photon source intensity as a func-
tion of the square of the cavity decay rate for various oscillator
frequencies ranging from 300 Hz to 10 MHz.

small (∼10−12 W) [16]. On the other hand, for the mirror
frequency of 500 Hz, the authors of [1] had an intensity
of ∼10−8 W. Moreover, this intensity was achieved with
the same cavity decay rate (γc ≈ 107 s−1). However, this
decay rate is substantially higher than demanded by the
constraints [2]. Our analysis reveals that a lower intensity
is required while still using a realistic value for γc.

Another concern when considering laser output is how
much disturbance the laser will cause to the environment.
If the laser intensity is too high, the laser can have the
opposite effect on the mirror’s environment than that in-
tended. That is, a high laser intensity may actually in-
crease environmental temperature [11]!

5.5 Reflectivity

In Figure 6a, the reflectivity is plotted as a function of
cavity decoherence rate for each of the three frequencies
investigated. As can be seen from the figure, the mirror
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Fig. 6. A plot of (a) mirror reflectivity as a function of cavity
decay rate for various oscillator frequencies ranging from 300
Hz to 10 MHz and (b) log(1−Rc) vs. logγc for the (optimized)
cavity lengths corresponding to the same frequencies.

reflectivity requirements are independent of mirror fre-
quency since the cavity decay rate is bound by the con-
straint γc � γD � ωm; i.e., the reflectivity requirements
remain constant as ωm increases from 300 Hz to 10 MHz.
Note that in our analysis, we had γc = γD = ωm.

In Figure 6b, log(1 −Rc) is plotted against log γc for
the three lengths determined through our analysis. This
figure demonstrates two things. First, without regard to
constraints, if γc remains fixed, then the mirror reflectivity
requirements are relaxed as the length of the cavity is in-
creased. As an example, for a mirror frequency of 10 MHz,
γc ≈ 107 s−1, and mirror reflectivity requirements are re-
laxed from ∼0.9999999 to about ∼0.999 as the length of
the cavity is increased from ∼0.000067 cm to ∼1.1 cm [3].

Second, if we assume each length corresponds to a spe-
cific frequency, then Figure 6b confirms the information
conveyed by Figure 6a. As cavity length is increased, then
for the constraint γc � γD � ωm, the mirror reflectiv-
ity must remain fixed. In other words, as frequency is
increased (hence as length is increased), the constraint
γc � γD � ωm demands a fixed mirror reflectivity!

6 Discussion

Our investigations led to the determination of a mirror
frequency of 10 MHz as optimal. At this frequency, not
only was the ground-state achieved; but, it was achieved
for a physically realizable cavity decay rate γc. This is im-
portant, since, current mirror technology sets restrictions
on the minimum value of γc that can not be ignored. As
a result of this restriction on γc, the values of many of
the constraint quantities are restricted. The conclusions
drawn from the 10 MHz case are summarized below.

First, temperature restrictions on interference visibil-
ity were greatly relaxed. In particular, our analysis re-
vealed that as mirror frequency is increased, the relatively
higher temperatures produce similar interference visibil-
ity. For example, the interference visibility obtained in the
10 MHz case for a temperature of ∼302 K was comparable
to the value corresponding to the 300 Hz case for a temper-
ature of ∼2.7 mK. For a given frequency, as temperature
is increased the movable mirror system becomes decoher-
ent. Moreover, coherence is destroyed within a fraction of
the cycle.

Second, a strong temperature dependence of the deco-
herence rate was revealed. Decoherence rate increases with
increasing temperature. Moreover, this increase becomes
more pronounced for relatively higher temperatures. As
with interference visibility, decoherence rate is also depen-
dent on mirror frequency. As the frequency is increased,
the maximum decoherence rate also increases. Again, the
difference in maximum decoherence rate between two fre-
quencies increases as the frequency is increased.

Third, for the 10 MHz case, ground-state energy was
obtained for a significantly lighter mirror. This was due
in part by keeping the separation ∆x fixed at 10−14 m
[in fact, ∆x remained constant for all frequencies] and by
the need for a much shorter optical cavity [∼0.3 µm]. This
resulted in less spreading of the beam, thereby requiring
a much smaller, lighter mirror [on the order of 10−14 kg].
Such cavities have been fabricated [4]. A smaller mirror
has two advantages. Small, relatively lighter mirrors are
easier to put into a superposition state as well as return
to ground-state. Further, smaller mirrors can be coated
uniformly more easily than larger mirrors. Thus, although
the reflectivity demands remain the same regardless of
frequency, these demands are easier to meet.

Fourth, a much lower source light intensity was needed
to return the mirror to its initial energy state. A lower
intensity results in less external interference. In fact, if the
source light’s intensity is too large, it may add heat to the
system, bringing the temperature to undesirable levels. At
the same time, the gain factor was not significantly altered
from that given in [1]. In fact, the gain factor was quite
similar in all three of frequencies we studied. As with the
intensity of the source light, the gain factor should not
become too large to minimize disturbance to the mirror’s
environment.

The optimized parameter regime (see Tabs. 2 and 3)
determined through our investigations could prove use-
ful in the field of Quantum Computing and this is a mo-
tivating factor in our work. In large quantum systems,
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environmentally induced decoherence sets in over time in-
ducing errors into the computations [6]. The system de-
scribed in this paper, with the optimal parameter regime
we developed, would provide the experimenter with the
ability to put a bacterium sized object into a superposi-
tion of states and maintain coherence of the system on a
time interval over which measurements could be recorded.
These measurements when applied to quantum error cor-
rection, could be used as a gauge to monitor the level of
decoherence in the quantum system, allowing adjustments
to be made as needed thereby minimizing error.
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